BuyseTest - Generalized Pairwise Comparisons
Implementation of the Generalized Pairwise Comparisons (GPC) as defined in Buyse (2010) <doi:10.1002/sim.3923> for complete observations, and extended in Peron (2018) <doi:10.1177/0962280216658320> to deal with right-censoring. GPC compare two groups of observations (intervention vs. control group) regarding several prioritized endpoints to estimate the probability that a random observation drawn from one group performs better/worse/equivalently than a random observation drawn from the other group. Summary statistics such as the net treatment benefit, win ratio, or win odds are then deduced from these probabilities. Confidence intervals and p-values are obtained based on asymptotic results (Ozenne 2021 <doi:10.1177/09622802211037067>), non-parametric bootstrap, or permutations. The software enables the use of thresholds of minimal importance difference, stratification, non-prioritized endpoints (O Brien test), and can handle right-censoring and competing-risks.
Last updated 17 hours ago
generalized-pairwise-comparisonsnon-parametricstatisticscpp
5.80 score 5 stars 91 scripts 783 downloadslavaSearch2 - Tools for Model Specification in the Latent Variable Framework
Tools for model specification in the latent variable framework (add-on to the 'lava' package). The package contains three main functionalities: Wald tests/F-tests with improved control of the type 1 error in small samples, adjustment for multiple comparisons when searching for local dependencies, and adjustment for multiple comparisons when doing inference for multiple latent variable models.
Last updated 7 months ago
inferencelatent-variable-modelsstatisticsopenblascpp
4.93 score 155 scripts 1.8k downloads